
The PSOC 5 Game Boy Emulator

A 6.115 Final Project

Raymond Tran

raytran@mit.edu

May 14, 2021

A brief video report is available here:

https://www.youtube.com/watch?v=4Qr0IfhJqd8

https://www.youtube.com/watch?v=4Qr0IfhJqd8

Contents

1 Introduction and Motivation 1

2 Project Overview and Layout 1
2.1 Hardware . 1
2.2 Software . 2

3 Report Format 3

4 Memory Module 3

5 Registers 4

6 The CPU 5
6.1 Writing the opcodes . 5
6.2 Basic Fetch/Decode/Execute Loop . 6

7 Adding a unit testing framework 7

8 Connecting the TFT display 8

9 Measuring CPU Performance & The Display Bottleneck 9
9.1 Optimizing for speed . 10

9.1.1 First try, Debug build, 24 Mhz Clock . 10
9.1.2 Debug build, 79 Mhz Clock . 10
9.1.3 Release build, -O3 . 12
9.1.4 Release build, -O3, Additional Code Inlined . 12

9.2 Display Bottleneck . 13

10 Implementing a Debugger 13

11 Video Display System (GPU) 15
11.1 How the Game Boy Stores Video Data . 15

11.1.1 Tile Encoding . 15
11.1.2 Tile Mapping . 16
11.1.3 Scrolling . 16

11.2 Display Timing . 17
11.3 DMA Transfer . 19

12 Using Test ROMS 21

13 Implementing Interrupts 22

14 Back to the GPU: Window and Sprites 23

15 Emulating DMA 25

16 Adding the hardware input 26

17 Emulating Timer Interrupts 30

18 Tetris! And other ROMS 32

19 Custom Boot ROM 34

20 Conclusion 34
20.1 Where to go from here . 34

21 Appendix 34
21.1 Code . 34
21.2 Useful Game Boy Emulator Development Links . 34

1 Introduction and Motivation

The goal of this project is to create an emulator for the original 1989 Game Boy system on the PSOC
5 that is able to play the original Tetris game. The 1989 Game Boy was an 8-bit handheld game console
developed by Nintendo. The console sold over a million units within weeks of its initial release, and was
the first in Nintendo’s Game Boy series. Notable titles on the system included Tetris, Pokemon, and The
Legend of Zelda.

Figure 1: 1989 Tetris. The goal!

The original Game Boy ran on a Sharp LR35902 CPU, which was a hybrid chip between the Intel 8080
and the Zilog Z80. The CPU ran at 4.19 Mhz, with 4 cycles per machine cycle. It featured 8K bytes of
RAM, along with 8K bytes of video RAM, with a 160x144 px display resolution.

The PSOC 5, with its ARM Cortex-M3 processor running at 79Mhz turns out to be just enough to
emulate the Game Boy Classic.

I have found several emulators of the Game Boy Classic running on micro-controllers similar to the PSOC
5, but I have not found any on the PSOC 5 itself. I chose this project because it is a good opportunity to
test my knowledge of assembly/computer architecture.

2 Project Overview and Layout

2.1 Hardware

The hardware for the system is straightforward:

1

Figure 2: Hardware overview

As shown, the PSOC takes input from the joysticks and buttons, and displays the emulated Game Boy
on the TFT screen.

2.2 Software

The software is where things get more interesting:

Figure 3: Software overview

As shown in the simplified diagram, the emulator simulates the memory layout of the Gameboy Classic
and manipulates it by emulating the CPU. The video display unit reads from the VRAM and displays the
results on the TFT screen.

2

3 Report Format

The order of the following sections reflect the approximate order that each module was implemented, as
well as the relevant implementation details.

4 Memory Module

I started with writing the memory management unit, since a CPU is not really a useful device without
memory to read from/write to.

This part of the code manages the memory access for the emulator. The original Game Boy had 16-bit
addressable memory, but only 8K of actual RAM and 8K of video RAM.

Here is a picture of the memory map:

Figure 4: Memory mapping

And here is a relevant snippet of the memory unit:

1 typede f s t r u c t Memory {
2 uint8_t wram [WRAM_SIZE] ; // work ram
3 uint8_t eram [EXTERNAL_RAM_SIZE] ; // ex t e rna l ram
4 uint8_t vram [VRAM_SIZE] ; // v ideo ram
5

6 uint8_t oam [OAM_SIZE] ; // Sp r i t e a t t r i b u t e t ab l e (OAM)
7 uint8_t zero_page [ZERO_PAGE_SIZE] ; // High address RAM (stack here)
8 uint8_t interrupt_enable ; // i n t e r r up t enable (l o ca t ed on 0xFFFF)
9 uint8_t interrupt_flag ; // i n t e r r up t f l a g (l o ca t ed on 0xFF0F)

10

11 // GPU r e g i s t e r s
12 uint8_t lcdc ; // LCD Control (R/W loca t ed on 0xFF40)
13 uint8_t lcdstatus ; // LCD Status (R/Wlocated on 0xFF41)
14 uint8_t scroll_y ; // SCY (R/W loca t ed on 0xFF42)
15 uint8_t scroll_x ; // SCX (R/W loca t ed on 0xFF43)

3

16 uint8_t current_scan_line ; // LY (R loca t ed on 0xFF44)
17 uint8_t lyc ; // LYC (used f o r l y compare i n t e r r up t s)
18 uint8_t background_palette ; // (W loca t ed on 0xFF47)
19 uint8_t obp0 ; // OBP0 ob j e c t p a l e t t e 0 (l o ca t ed on 0xFF48)
20 uint8_t obp1 ; // OBP1 ob j e c t p a l e t t e 1 (l o ca t ed on 0xFF49)
21 uint8_t wx ; // window x po s i t i o n + 7
22 uint8_t wy ; // window y po s i t i o n
23

24 // S e r i a l communication
25 uint8_t sb ; //SB s e r i a l t r a n s f e r data (l o ca t ed on 0xFF01)
26 uint8_t sc ; //SC s e r i a l t r a n s f e r c on t r o l (l o ca t ed on 0xFF02)
27 // Joypad
28 uint8_t joyp ; //Joypad r e g i s t e r l o ca t ed on 0xFF00 ;
29

30 // Timer
31 uint8_t timer_divider ; // Timer d i v i d e r DIV
32 uint8_t timer_counter ; // Timer counter TIMA
33 uint8_t timer_modulo ; // Timer Modulo TMA
34 uint8_t timer_control ; // Timer Control TAC
35 } Memory ;

As shown, the WRAM and VRAM are implemented as large arrays in memory. The Memory struct is
also responsible for holding many registers related to graphics, serial communication, and other MMIO.

Notice, however, that this struct does not include the ROM for the Game Boy. This is due to the space
constraints of the PSOC 5, which does not have enough RAM to hold an entire Game Boy ROM. It does,
however, have a whopping 64Kb of flash (program) memory. This is enough to hold the ROMs. In a separate
file, I declare these large constant arrays:

1 #inc lude ”rom . h”
2 #inc lude ” s t d i n t . h”
3 const uint8_t bios [2 5 6] = {
4 0x31 , 0 xFE , 0 xFF , 0 xAF , 0 x21 , 0 xFF , 0 x9F , 0 x32 , 0 xCB , 0 x7C , 0 x20 , 0 xFB , 0 x21 , 0 x26 , 0 xFF , 0 x0E ,
5 /// ommitted f o r c l a r i t y . . .
6 0xF5 , 0 x06 , 0 x19 , 0 x78 , 0 x86 , 0 x23 , 0 x05 , 0 x20 , 0 xFB , 0 x86 , 0 x20 , 0 xFE , 0 x3E , 0 x01 , 0 xE0 , 0 x50 } ;
7

8

9 // Or i g i na l 1989 Te t r i s
10 const uint8_t rom [0 x8000] = {
11 0xC3 , 0 x0C , 0 x02 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 xC3 , 0 x0C , 0 x02 , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
12 // 100 s o f l i n e s ommitted f o r c l a r i t y . . .
13 0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
14 }

These arrays are populated directly with the instructions from the ROMs. I obtained the original Tetris
ROM and original boot BIOS (the ROM that displays the Nintendo Logo) from the popular emulation site
https://vimm.net/. I converted them directly into C-style arrays using the xxd linux tool.

xxd -i -c 16 <ROM_FILE>

With these arrays declared const., the compiler was smart enough to write these to flash memory. The
actual fetching and writing to and from these memory locations happens through the fetch() function of the
Memory struct, which handles the relevant mapping from instructions to array locations in a simple if-else
chain.

5 Registers

The next most important piece of code is the registers on the CPU. The Sharp LR35902 CPU had 7
main registers labeled A, B, C, D, E, F, H. The interesting part of Game Boy assembly is that these registers
could also be used as 16-bit registers. For example, there is the HL register, which uses H as the higher byte
and L as the lower byte.

4

https://vimm.net/

This does pose a slightly awkward problem when it comes to programming Game Boy emulators. To
implement 16-bit registers, many emulators use helper functions like the following:

1 void set_hl (i n t new_hl) ;

In this emulator, I took advantage of C’s union type, which forces variables to share the same memory
locations. My implementation of the CPU registers looks like:

1 typede f s t r u c t Registers {
2 s t r u c t {
3 union {
4 s t r u c t {
5 uint8_t f ;
6 uint8_t a ;
7 } ;
8 uint16_t af ;
9 } ;

10 } ;
11 /∗
12 more r e g i s t e r s bc , de , h l
13 ommitted from th i s paper f o r c l a r i t y
14 ∗/
15 uint16_t pc ; // program counter
16 uint16_t sp ; // s tack po in t e r
17 bool ime ; // i n t e r r up t enable
18 bool ime_enable_req ; // used to de lay e i by 1 i n s t r
19 } Registers ;

By using a union between the anonymous struct and the 16 bit integer af, I can write registers.a = 0x3
and be able to read registers.af as 0x30.

Also notice the inclusion of the standard program counter (pc) and stack pointer (sp) registers, as well
as the interrupt enable flag. The interrupt enable flag is in this struct rather than Memory since it is not
mapped to a memory location in the original Game Boy.

6 The CPU

Finally, with the registers and memory unit available, I moved on to writing the basic CPU.
The external interface for using the CPU was kept very simple:

1 typede f s t r u c t Cpu {
2 Registers reg ;
3 Memory∗ mem ;
4 bool inBios ;
5 } Cpu ;
6

7 // Handles one round o f f e t ch /decode/ execute
8 // Returns the number o f machine c y c l e s taken f o r the i n s t r u c t i o n
9 // 4 c l o ck c y c l e s == 1 machine cy c l e

10 i n t tick (Cpu∗ cpu) ;
11 // Resets the cpu to the s t a r t i n g s tate , c l e a r i n g a l l r e g i s t e r s e t c
12 void reset_cpu (Cpu ∗cpu) ;

As shown, the CPU has memory to manage, registers to use, and functions to execute the next instruction
and to reset the CPU.

6.1 Writing the opcodes

In my instruction set.h header file, I declared each individual operation of the Sharp LR35902. I made
sure to declare each one as inline as a hint to the compiler to inline the function for performance. Here is
an example, looking at the xor instruction:

5

1 s t a t i c i n l i n e void xor_a_b (Cpu∗ cpu , uint8_t b) {
2 cpu−>reg . a ˆ= b ;
3 set_zero_flag(&cpu−>reg , cpu−>reg . a == 0) ;
4 set_subtraction_flag(&cpu−>reg , f a l s e) ;
5 set_carry_flag(&cpu−>reg , f a l s e) ;
6 set_half_carry_flag(&cpu−>reg , f a l s e) ;
7 }
8 s t a t i c i n l i n e uint8_t xor_a_r8 (Cpu∗ cpu , uint8_t∗ reg) {
9 xor_a_b (cpu , ∗reg) ;

10 r e turn 1 ;
11 }
12 s t a t i c i n l i n e uint8_t xor_a_mhl (Cpu∗ cpu) {
13 xor_a_b (cpu , fetch(&cpu−>mem , cpu−>reg . hl , cpu−>inBios)) ;
14 r e turn 2 ;
15 }
16 s t a t i c i n l i n e uint8_t xor_a_n8 (Cpu∗ cpu) {
17 xor_a_b (cpu , fetch_and_increment_pc (cpu)) ;
18 r e turn 2 ;
19 }

Notice how I used one function to implement each possible invocation of the xor, and that each instruction
sets various flags on the flag register.

In general, most of the instructions take on this form:

1 // Returns the r e s u l t o f a op b
2 // Used only in i n s t r u c t i o n s e t . h
3 s t a t i c i n l i n e uint8_t instruction_a_b (Cpu∗ cpu , uint8_t a , uint8_t b) ;
4

5 // Returns the number o f machine c y c l e s taken
6 // Given po i n t e r s to the r e g i s t e r s
7 s t a t i c i n l i n e uint8_t instruction_r8_r8 (Cpu∗ cpu , uint8_t∗ reg1 , uint8_t∗ reg2) ;
8

9 // Returns the number o f machine c y c l e s taken
10 // For running [r e g i s t e r] op [va lue o f memory @reg . h l]
11 s t a t i c i n l i n e uint8_t instruction_r8_mhl (Cpu∗ cpu , uint8_t∗ reg)
12

13 // Returns the number o f machine c y c l e s taken
14 // For running [r e g i s t e r] op [immediate va lue]
15 s t a t i c i n l i n e uint8_t instruction_r8_n8 (Cpu∗ cpu , uint8_t∗ reg)

6.2 Basic Fetch/Decode/Execute Loop

The tick() method looks like:

1 i n t tick (Cpu∗ cpu) {
2 // Fetch
3 uint8_t instruction = fetch_and_increment_pc (cpu) ;
4

5 // Check f o r CB−p r e f i x ed i n s t r u c t i o n s
6 i f (instruction == 0xCB) {
7 // This i s a CB−p r e f i x ed i n s t r u c t i o n !
8 // Have to read the next one
9 uint8_t cb_instr = fetch_and_increment_pc (cpu) ;

10 r e turn execute_cb_prefix (cpu , cb_instr) ;
11 } e l s e {
12 // Regular i n s t r u c t i o n
13 r e turn execute_normal (cpu , instruction) ;
14 }
15 }

Note the check for 0xCB-prefixed instructions. The Sharp LR35902 was able to extend its instruction set
beyond just the 28 available numbers by prefixing some instructions with 0xCB. This means these instructions
take at least 1 additional cycle to read, so they are typically uncommon instructions such as bit-shifting.

6

The implementation of the tick() method on the Cpu required a lot thinking between writing clear code
and writing fast code. In particular the process of decoding an instruction’s opcode to its relevant function
can be a challenge. It is possible to do this by creating a large array of function pointers, and indexing into
this array with the opcode itself, but given the space and speed constraints on the PSOC, I chose to use a
large switch-case instead. execute normal() and execute cb prefix() both use large switch cases like so:

1

2 // Assumes that the pc i s a l r eady incremented to po int to the next i n s t r
3 s t a t i c i n l i n e i n t execute_normal (Cpu∗ cpu , uint8_t instruction) {
4 switch (instruction) {
5 case 0x0 : r e turn nop (cpu) ; //NOP
6 case 0x1 : r e turn ld_r16_n16 (cpu , &cpu−>reg . bc) ; //LD BC, u16
7 case 0x2 : r e turn ld_mr16_a (cpu , &cpu−>reg . bc) ; //LD (BC) ,A
8 case 0x3 : r e turn inc_r16 (cpu , &cpu−>reg . bc) ; //INC BC
9 case 0x4 : r e turn inc_r8 (cpu , &cpu−>reg . b) ; //INC B

10 case 0x5 : r e turn dec_r8 (cpu , &cpu−>reg . b) ; //DEC B
11 case 0x6 : r e turn ld_r8_n8 (cpu , &cpu−>reg . b) ; //LD B, u8
12 case 0x7 : r e turn rlca (cpu) ; //RLCA
13 case 0x8 : r e turn ld_mn16_sp (cpu) ; //LD (u16) ,SP
14 case 0x9 : r e turn add_hl_r16 (cpu , &cpu−>reg . bc) ; //ADD HL,BC
15 case 0xa : r e turn ld_a_mr16 (cpu , &cpu−>reg . bc) ; //LD A, (BC)
16 case 0xb : r e turn dec_r16 (cpu , &cpu−>reg . bc) ; //DEC BC
17 case 0xc : r e turn inc_r8 (cpu , &cpu−>reg . c) ; //INC C
18 case 0xd : r e turn dec_r8 (cpu , &cpu−>reg . c) ; //DEC C
19 case 0xe : r e turn ld_r8_n8 (cpu , &cpu−>reg . c) ; //LD C, u8
20 case 0xf : r e turn rrca (cpu) ; //RRCA
21 case 0x10 : r e turn stop (cpu) ; //STOP
22 case 0x11 : r e turn ld_r16_n16 (cpu , &cpu−>reg . de) ; //LD DE, u16
23 case 0x12 : r e turn ld_mr16_a (cpu , &cpu−>reg . de) ; //LD (DE) ,A
24 case 0x13 : r e turn inc_r16 (cpu , &cpu−>reg . de) ; //INC DE
25 /∗
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 and again and again un t i l we reach 0xFF
28 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 ∗/

The advantage of using large-switch cases over large if-else chains is that the compiler is able to optimize
these switch-cases into look-up tables. After fiddling with the build settings in PSOC Creator to make sure
optimizations were on, I was able to look at the generated assembly to confirm that this was the case:

1 276 : cpu . c ∗∗∗∗ switch (instruction) {
2 539 . loc 3 276 0
3 540 0004 0446 mov r4 , r0

4 541 . loc 3 277 0
5 542 0006 FE29 cmp r1 , #254
6 543 0008 01 F25186 bhi . L29
7 544 000c DFE811F0 tbh [pc , r1 , lsl #1]

The last instruction is a tbh, which according to the ARM assembly manual, stands for Table Branch
Halfword. Our PSOC has 32-bit words, so a half word is 16 bits, which is more than enough for the number
of opcodes that the Game Boy has.

7 Adding a unit testing framework

What’s a good software project without unit tests? After writing so much code already, I was almost
certain I had some latent bugs that I had to fix. PSOC Creator does not appear to have an easy way to add
unit tests by default, but I was able to add a testing framework called Ceedling. I followed the instructions
outlined in this post.

With Ceedling, I was able to write simple unit tests that helped me catch bugs in my code. Here is an
example of a unit test, testing the hl 16-bit register.

7

1 void test_hl (void) {
2 Registers regs ;
3 regs . h = 0x03 ;
4 regs . l = 0x05 ;
5 TEST_ASSERT_EQUAL_HEX16 (0 x0305 , regs . hl) ;
6 regs . hl = 0x0123 ;
7 TEST_ASSERT_EQUAL_HEX16 (0 x01 , regs . h) ;
8 TEST_ASSERT_EQUAL_HEX16 (0 x23 , regs . l) ;
9 }

Given the short amount of time and the massive amount of code in the project, I wasn’t able to get to
full unit test coverage, but they were still a useful tool for the code that I did cover.

8 Connecting the TFT display

It was time to get the display connected. Following the instructions at http://web.mit.edu/6.115/

www/document/TFT_User_Manual.pdf, I was able to connect the TFT screen and use the emWin library to
draw text.

Figure 5: TFT Screen Schematic

8

http://web.mit.edu/6.115/www/document/TFT_User_Manual.pdf
http://web.mit.edu/6.115/www/document/TFT_User_Manual.pdf

Figure 6: Initial hardware screen connection. Ignore the buttons/resistors on the left side; those are remains
from a previous assignment.

9 Measuring CPU Performance & The Display Bottleneck

With the TFT screen connected, I decided now was a good time to evaluate the performance of the CPU
to ensure that it was feasible to emulate the Game Boy at all. I modified main.c to start the fetch/de-
code/execute loop on the BIOS and time the result.

I added this timer:

Figure 7: Timer used for measuring CPU performance

Which would generate an interrupt at a certain frequency. In the interrupt handler, I displayed the
relevant speed information on the TFT screen.

1 CY_ISR (Timer_1_Handler) {
2 sprintf (buffer , ”On−time (sec) : %d \n”
3 ” I n s t r s / second : %lu \n”
4 ”Cycles / second : %lu \n”

9

5 ”Machine Cycles / second :\n %lu ” , (i n t) seconds , total_instrs ∗60/∗/4∗/ , ←↩
total_cycles , total_cycles ∗60/∗/4∗/) ;

6 total_cycles = 0 ;
7 total_instrs = 0 ;
8

9 GUI_DispStringAt (buffer , 0 , 0) ;
10 seconds += 0.01666 ;
11 Timer_1_ReadStatusRegister () ; //Clear t imer r e g i s t e r to l eave i n t e r r up t
12 }

This turned out to be very valuable when it came to optimizing my code for speed. Here is the progression,
with stats measured at 4-second intervals. Pay close attention to the ”Machine cycles/second” metric:

9.1 Optimizing for speed

9.1.1 First try, Debug build, 24 Mhz Clock

Figure 8: First try. Not so fast.

As shown, this only ran at 185K machine cycles/second. This was rather disappointing, considering the
original game boy ran at 1M machine cycles/second.

9.1.2 Debug build, 79 Mhz Clock

I modified the PSOC’s default 24 Mhz clock to instead run at the maximium 79 Mhz through PSOC
Creator. This was as simple as changing the desired clock speed in PSOC creator to 79 Mhz:

10

Figure 9: PSOC 5 system clock adjustment GUI

This results in a 3x speedup, as you would expect. Props to Cypress for making this so easy!

Figure 10: Quite a bit faster!

11

9.1.3 Release build, -O3

From there, I updated my build settings to run in release mode, optimizing for speed (-O3) rather than
PSOC Creator’s default (-Os).

Figure 11: Now that’s some speed!

Now that’s quite the improvement! Still felt like I could do even better, though.

9.1.4 Release build, -O3, Additional Code Inlined

Lastly, I was able to squeeze out 3 K more machine cycles/second by going through my existing code
and inlining additional functions.

12

Figure 12: Now we’re gaming!

I was satisfied here, considering the original Game Boy ran at 1M machine cycles/second.

9.2 Display Bottleneck

With my code optimized for speed, I started changing the update frequency of the display.
From these stats, I noticed that writing to the TFT screen using the emWin library appeared to be a

big bottleneck in performance. In particular, writing to the display once every 4 seconds runs at around
1.2M machine cycles/second, but writing to the display 4x a second results in only around 700 machine
cycles/second. I chose to address this later.

10 Implementing a Debugger

Next I added a basic debugging interface for the CPU.

13

Figure 13: Debug interface. Shows registers, stack, flags, and even memory starting at any arbitrary location.
Essential!

I added a button interrupt to step the CPU and refresh the display. Additionally, I added a UART
component to communicate with my computer over serial. With this debugger, I decided it was time to
debug the boot ROM. The Game Boy boot ROM is available here: https://gbdev.gg8.se/wiki/articles/
Gameboy_Bootstrap_ROM

I ran through the Game Boy’s boot ROM and was able to catch a few bugs in my implementation by
comparing the registers/stack of my emulator to the well known Game Boy emulator bgb http://bgb.

bircd.org/

Eventually, I made it through the execution and encountered what appeared to be an infinite loop.
Inspecting the BIOS code, we notice the following:

1 Addr_0064 :
2 LD A , ($FF00+$44) ; $0064 wait f o r screen frame

3 CP $90 ; $0066
4 JR NZ , Addr_0064 ; $0068

This code waits for a new frame to start, indicated when the value at location 0xFF44 == 0x90. Without
a video display system, however, this would never happen. That meant it was time to implement the video

14

https://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
https://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
http://bgb.bircd.org/
http://bgb.bircd.org/

display!

11 Video Display System (GPU)

The original Game Boy’s video display system worked similarly to a VGA display. Another chip on the
system was responsible for reading from the VRAM and displaying scan lines onto the LCD.

11.1 How the Game Boy Stores Video Data

The Game Boy utilized a tile mapping system to reduce the amount of memory required for displaying
games.

11.1.1 Tile Encoding

Each tile is an 8x8 px square. Tile data is stored in VRAM at locations 0x8000-0x97FF. Instead of
storing colors directly, pixels are encoded as color IDs ranging from 0-3. This is sometimes called 2bpp (2-bit
per pixel) encoding. Each tile requires 16 bytes of data, 2 bytes per row, for a total of 384 tiles.

For example, here is a single tile in Pokémon Red/Blue Version (a window from a house):

0x8000:

[FF 00 7E FF 85 81 89 83 93 85 A5 8B C9 97 7E FF]

Consider just the first row, which requires 2 bytes: 0xFF and 0x00. The first byte is the low byte, and the
second byte is the high byte. The first pixel of the first row has its color ID given by

two bits {MSB high byte, MSB low byte}

low = 0xFF = 11111111

high = 0x00 = 00000000

MSB high = 1

MSG low = 0

=> 01

So the first pixel has a color ID of 1. If you repeat this process for each pixel across all rows, you end up
with the following tile:

Figure 14: Example tile. Notice the first pixel is a light grey–corresponds to color ID of 1.

Here is a graphic that displays this more concretely:

15

Figure 15: Concrete tile encoding summary

11.1.2 Tile Mapping

There are two 32x32 tile maps in VRAM at addresses 0x9800-0x9BFF and 0xC00-0x9FFF. Each entry
at these map locations acts as a tileID (simple offset) into the tile data described above.

11.1.3 Scrolling

Given that each tile map is 32x32 tiles, and each tile is 8x8 px, the Game Boy has enough data for a
256x256 sized image. Since the display is only 160x144 px, the extra space is used to implement scrolling
windows. There are two registers SCY and SCX (scrollX and scrollY) that control the start of the display
section.

16

Figure 16: Scrolling on the Game Boy. The logo in the boot ROM isn’t moving down; the entire window is
moving up!

Pixels that exceed the bounds of the display wrap around.

11.2 Display Timing

Again, since the original Game Boy’s pixel processing unit (PPU) ran on its own clock, the timing
between the PPU and CPU is precisely defined as follows:

17

Figure 17: Timing diagram for the PPU

As shown in the diagram, each scanline runs through the OAM-SEARCH, Pixel Transfer, and H-Blank
stages. OAM-Search stands for Object Attribute Memory search; this is where the PPU is collecting data
about sprites. Pixel transfer is the actual communication time. During this time access to VRAM by the
CPU is blocked to prevent memory corruption. At the end of rendering 144 lines, the PPU emits a V-Blank.
The behavior is summarized here. Note that the LY register holds the current scan line.

Figure 18: PPU state machine

18

In my emulator, this is implemented using a simple struct Gpu, which maintains a mode clock that is
incremented each time the CPU runs an instruction.

1 uint8_t original_mode = gpu−>mode ;
2 gpu−>mode_clock += delta_machine_cycles ;
3

4 switch (original_mode) {
5 // OAM Read , s c an l i n e
6 case OAM_MODE :
7 i f (gpu−>mode_clock >= OAM_READ_TIME_MACHINE_CYCLES) {
8 // mode switch to VRAM read/ p i x e l t r a n s f e r (mode 3)
9 gpu−>mode_clock = 0 ;

10 gpu−>mode = PIXEL_TRANSFER_MODE ;
11 }
12 // VRAM Read , s c an l i n e a c t i v e
13 case PIXEL_TRANSFER_MODE :
14 i f (gpu−>mode_clock >= VRAM_READ_TIME_MACHINE_CYCLES) {
15 // mode switch to HBlank
16 gpu−>mode_clock = 0 ;
17 gpu−>mode = HBLANK_MODE ;
18

19 //Draw a f u l l l i n e
20 i f (! DEBUG_MODE)
21 renderLine (mem) ;
22 }

Notice that instead of rendering pixel-by-pixel like a true PPU would, I chose to render line-by-line for
simplicity. Rendering is done in the renderLine() function. The renderLine() function itself is fairly simple
(simply selects the relevant memory info to display), but implementing it was difficult due to the various
indexing tricks required. See the implementation in the code for more details.

11.3 DMA Transfer

To address the display bottleneck described in section 9.2, I utilized the DMA (Direct Memory Access)
function of the PSOC 5.

Figure 19: PSOC 5 DMA component + SPI. Notice the interrupt line leaving the SPI Master.

The SPI Master component is initialized with a 4 byte tx buffer. It is set to emit a tx interrupt every

19

time the SPI buffer is empty. This initiates a 1 byte DMA burst transfer, which transfers data from a
buffer in the PSOC RAM to the SPI buffer. Interrupts are fired continuously from the SPI Master until
the DMA transaction is complete (when the full buffer length has been sent). After the tx transaction is
complete, another transaction is chained immediately to transfer a ”disable tx interrupt” byte to the SPI
Master interrupt status mask.

New data transmissions are initialized by enabling the SPI Master’s tx interrupt.

1 void setupDma (uint8_t∗ dma_buff , uint32_t burstLength) {
2 /∗ Disab le the TX in t e r r up t o f SPIM ∗/
3 SPIM_1_TX_STATUS_MASK_REG&=(˜SPIM_1_INT_ON_TX_EMPTY) ;
4

5 /∗ Take a copy o f SPIM TX STATUS MASK REG which w i l l be used to d i s ab l e the TX ←↩
i n t e r r up t us ing DMA ∗/

6 InterruptControl=SPIM_1_TX_STATUS_MASK_REG ;
7

8 // I n i t DMA, 1 byte bursts , each burst r e qu i r e s a r eque s t
9 txChannel = DMA_1_DmaInitialize (DMA_TX_BYTES_PER_BURST , DMA_TX_REQUEST_PER_BURST , HI16←↩

(((uint32)&dma_buff [0])) , HI16 (((uint32) SPIM_1_TXDATA_PTR))) ;
10

11 // A l l o ca t e TD to t r a n s f e r x bytes
12 txTD = CyDmaTdAllocate () ;
13

14 // A l l o ca t e TD to d i s ab l e the SPI Master TX in t e r r up t
15 InterruptControlTD = CyDmaTdAllocate () ;
16

17 // txTD = From the memory to the SPIM
18 CyDmaTdSetAddress (txTD , LO16 (((uint32)&dma_buff [0])) , LO16 (((uint32) SPIM_1_TXDATA_PTR←↩

))) ;
19

20 // Set the source address as v a r i a b l e ' In t e r ruptCont ro l ' which s t o r e s the value 0 to ←↩
d i s ab l e the SPI INT ON TX EMPTY

21 // and the d e s t i n a t i on i s Control Reg SPIM ctrl reg CONTROL REG
22 CyDmaTdSetAddress (InterruptControlTD , LO16 ((uint32)&InterruptControl) , LO16 ((uint32)&←↩

SPIM_1_TX_STATUS_MASK_REG)) ;
23

24 // Set TD tx t r a n s f e r count as ” burstLength ” to t r a n s f e r the data packet
25 // Next Td as InterruptControlTD , and auto increment source address a f t e r each ←↩

t r an s a c t i on
26 CyDmaTdSetConfiguration (txTD , burstLength , InterruptControlTD , TD_INC_SRC_ADR) ;
27

28 // Set InterruptControlTD with t r a n s f e r count 1 , next TD as txTD
29 // Also enable the Terminal Output . This can be used to monitor whether t r a n s f e r i s ←↩

complete
30 CyDmaTdSetConfiguration (InterruptControlTD , 1 , txTD , 0) ;
31

32 // Terminate the chain o f TDs ; t h i s c l e a r s any pending reque s t to the DMA
33 CyDmaChSetRequest (txChannel , CPU_TERM_CHAIN) ;
34 CyDmaChEnable (txChannel , 1) ;
35

36 // Set TD tx as the i n i t i a l TD as s o c i a t ed with channe l tx
37 CyDmaChSetInitialTd (txChannel , txTD) ;
38

39 // Enable the DMA channel − channe l tx
40 CyDmaChEnable (txChannel , 1) ;
41 }

Note that it is important to not write into the dma buffer at the same time that the DMA transaction
is occurring. The state of the DMA transfer can be checked by looking at the SPI Master’s interrupt status
register. This behavior is abstracted away in the following interface:

1 // This s e t s up a DMA chain that t r a n s f e r s data in dma buff over SPI ,
2 // then c l e a r s the SPI In t e r rup t on Empty Flag
3 // To s t a r t a ”new” DMA t r a n s f e r use startDMATransfer ()
4 // burstLength s p e c i f i e s how many bytes to send in one t r an sa c t i on

20

5 void setup_dma (uint8_t∗ dma_buff , uint32_t burstLength) ;
6

7 // Returns t rue i f DMA i s ready f o r another round
8 bool is_dma_ready (void) ;
9 // S ta r t s a new DMA t r a n s f e r

10 void start_dma_transfer (void) ;

The renderLine() function writes into the dma buffer and initiates a new transfer request at the end start
of every HBlank mode.

This results in a significant speedup in the emulator’s speed; visually there appeared to be at least a 2x
speedup.

With the above components implemented, I was able to display the Nintendo Logo as well as the Tetris
copyright screen:

(a) Nintendo Logo! (b) The Tetris Copyright screen!

Figure 20: Starting to get there!

12 Using Test ROMS

With my basic CPU and GPU system more or less complete, I then tested my CPU instructions with
test ROMS from https://github.com/c-sp/gameboy-test-roms.

To do this, I first had to make a better way of switching ROMs. Due to the limited amount of memory
on the system, each ROM is declared as a constant byte array. To facilitate easier ROM switching, I added
the following precompiler if-else chain to my rom.c file:

1 #i f ROM == TETRIS
2 const uint8_t rom [] = { . . . }

21

https://github.com/c-sp/gameboy-test-roms

3 #e l i f ROM == TEST ROM CPU INSTRS 1 SPECIAL
4 const uint8_t rom [] = { . . . }
5 #e l i f ROM == TEST ROM CPU INSTRS 3 OP SP HL
6 const uint8_t rom [] = { . . . }
7 // more ROMS

Then, I created a new header file emumode.h, where I declared the following:

1 /∗
2 This f i l e conta in s precompi l e r d e f i n i t i o n s that change the func t i on o f the emulator
3 ∗/
4 #i f n d e f EMUMODEH
5 #de f i n e EMUMODEH
6 #de f i n e DEBUGMODE true
7 #de f i n e DEBUG TRACE THROUGH SERIAL f a l s e
8 #de f i n e DEBUG TRACE THROUGH SERIAL BREAKPOINT 0x0100 // where to s t a r t s e r i a l t r a c e
9 #de f i n e DEBUGBREAKPOINTON true

10 #de f i n e DEBUGBREAKPOINT 0x27FB
11 #de f i n e DEBUGMEMORYDISPLAY LOC 0x9800
12 #de f i n e DEBUGSHOWVRAMONBUTTON f a l s e
13

14 // ROM l i s t
15 #de f i n e TETRIS 0
16 #de f i n e TEST ROM CPU INSTRS 1 SPECIAL 1
17 #de f i n e TEST ROM CPU INSTRS 3 OP SP HL 3
18 #de f i n e TEST ROM CPU INSTRS 4 OP R IMM 4
19 #de f i n e TEST ROM CPU INSTRS 5 OP RP 5
20 #de f i n e TEST ROM CPU INSTRS 6 LD R R 6
21 #de f i n e TEST ROM CPU INSTRS 7 JR CALL RET RST 7
22 #de f i n e TEST ROM CPU INSTRS 8 MISC INSTRS 8
23 #de f i n e TEST ROM CPU INSTRS 9 OP R R 9
24 #de f i n e TEST ROM CPU INSTRS 10 BIT OPS 10
25 #de f i n e TEST ROM CPU INSTRS 11 OP A MHL 11
26 // ROM s e l e c t i o n
27 #de f i n e ROM TETRIS
28

29 #de f i n e START IN BIOS true
30 #end i f

This allowed me to very quickly change ROMs between compilation by setting the ROM definition to
the target ROM. I also placed other settings here, such as whether or not to enable the debugger.

After running through the test ROMS and performing extensive debugging, my emulator slowly passed
all tests.

13 Implementing Interrupts

Now it was time to implement interrupts. There are five different types of interrupts on the Game Boy:

Interrupt ISR Location

Vertical blank 0x0040
LCD status triggers 0x0048

Timer overflow 0x0050
Serial link 0x0058

Joypad press 0x0060

The interrupt enable register at location 0xFFFF controls which interrupts are on.

22

Bit When 0 When 1

0 Vblank off Vblank on
1 LCD stat off LCD stat on
2 Timer off Timer on
3 Serial off Serial on
4 Joypad off Joypad on

At location 0xFF0F is the interrupt flag, where corresponding bits are set (using the same scheme above)
when an interrupt is requested. Interrupts are fired when they are both requested and when they are enabled
for that specific interrupt.

There is also a separate interrupt master enable (IME), which enables/disables all interrupts. The IME
is not mapped to a memory location; it can only be toggled with the ei (enable interrupts) and di (disable
interrupts) instructions. In my emulator, this is implemented in the Registers struct described earlier.

Implementing the interrupt system was fairly straightforward. I added this section to my CPU tick()
method:

1 i n t interrupt_enable = cpu−>mem−>interrupt_enable ;
2 i n t interrupt_flag = cpu−>mem−>interrupt_flag ;
3 i n t active_interrupts = interrupt_enable & interrupt_flag ;
4 i f (cpu−>reg . ime && active_interrupts) {
5 // d i s ab l e i n t e r r up t s (u n t i l a r e t i can re−enable)
6 cpu−>reg . ime = f a l s e ;
7 cycles_taken += 5 ; // takes an add i t i ona l 5 c y c l e s to s e r v i c e i n t e r r up t
8 // s e r v i c e the i n t e r r up t
9 i f (active_interrupts & VBLANK_INTERRUPT_REG_MASK) {

10 rst_vec (cpu , VBLANK_ISR_LOC) ;
11 cpu−>mem−>interrupt_flag &= ˜VBLANK_INTERRUPT_REG_MASK ;
12 } e l s e i f (active_interrupts & LCD_STAT_INTERRUPT_REG_MASK) {
13 rst_vec (cpu , LCD_STAT_ISR_LOC) ;
14 cpu−>mem−>interrupt_flag &= ˜LCD_STAT_INTERRUPT_REG_MASK ;
15 } e l s e i f (active_interrupts & TIMER_INTERRUPT_REG_MASK) {
16 rst_vec (cpu , TIMER_ISR_LOC) ;
17 cpu−>mem−>interrupt_flag &= ˜TIMER_INTERRUPT_REG_MASK ;
18 } e l s e i f (active_interrupts & SERIAL_INTERRUPT_REG_MASK) {
19 rst_vec (cpu , SERIAL_ISR_LOC) ;
20 cpu−>mem−>interrupt_flag &= ˜SERIAL_INTERRUPT_REG_MASK ;
21 } e l s e i f (active_interrupts & JOYPAD_INTERRUPT_REG_MASK) {
22 rst_vec (cpu , JOYPAD_ISR_LOC) ;
23 cpu−>mem−>interrupt_flag &= ˜JOYPAD_INTERRUPT_REG_MASK ;
24 }
25 }

And at the start of every VBLANK period in my GPU.c, I added the following:

1 // reque s t i n t e r r up t
2 mem−>interrupt_flag |= VBLANK_INTERRUPT_REG_MASK ;

And with that, my emulator was able to get to the home screen of Tetris!

14 Back to the GPU: Window and Sprites

In addition to the background, the Game Boy also had the ability to render a ”window”, which is another
tileset on top of the background. It was usually used to display static images on top of moving backgrounds,
such as a HUD display side scrolling games.

23

Figure 21: Super Mario Land (1989). The top HUD bar was rendered with the Game Boy’s window, allowing
the background to move while keeping the HUD static on the screen. Mario himself was a sprite.

The Game Boy also had sprites. Sprites allowed developers to render graphics that were not tile-aligned.
The Game Boy stored information about up to 40 sprites at once in the OAM (Object Attribute Memory)
located at 0xFE00 - 0xFEA0.

Each sprite entry in OAM consists of 4 bytes. The first specifies the y-position of the sprite. The second
specifies the x-position. The third specifies the tile index for the sprite in the background map. And the
fourth byte contains boolean flags for certain controllable sprite properties.

I added sprite functionality in my emulator in a separate function render sprite on scanline(). Its im-
plementation is very similar to the rendering of background tiles and window tiles, though it has slightly
more complexity to account for edge cases such as overlapping sprites and the option of rendering 8x16 sized
sprites.

Here was another case where it was very useful to find pre-made test ROMS. I used the very popular
dmg-acid2 test found here https://github.com/mattcurrie/dmg-acid2, which tests all the basic functions
of the GPU. With a successful renderer, the ROM displays a smiling image on the screen:

24

https://github.com/mattcurrie/dmg-acid2

Figure 22: A happy friend

15 Emulating DMA

Much like the PSOC 5, the Game Boy had a DMA controller that allowed it to copy data to the OAM
very quickly. Writing the value XX to 0xFF46 starts a DMA transfer of the following form:

Source: 0xXX00-0xXX9F ;XX = 0x00 to 0xDF

Destination: 0xFE00-0xFE9F

For now, I implemented this directly in my memory struct, copying bytes straight away. This technically
is incorrect, since the DMA transfer takes time to complete, but it is close enough to run Tetris.

1 // Emulates a dma t r a n s f e r
2 s t a t i c void start_dma (Memory∗ mem , uint8_t xx) {
3 // Source : $XX00−$XX9F ;XX = $00 to $DF
4 // Des t inat i on : $FE00−$FE9F
5 uint16_t source = xx << 8 ;
6 i n t i ; // copy 160 bytes
7 f o r (i=0;i<160;i++){
8 mem−>oam [i] = fetch (mem , source + i , f a l s e) ;
9 }

10 }
11 . . .

25

12 void write_mem (Memory∗ memory , uint16_t address , uint8_t data) {
13 switch (address) {
14
15 case OAM_DMA_LOC :
16 start_dma (memory , data) ;
17 break ;
18

16 Adding the hardware input

Now it was time to actually add the joystick and buttons on my board.

Figure 23: Schematic for buttons/switches.

I redid some of the wiring to be more compact. Notice that this new configuration uses one breadboard
instead of two:

26

Figure 24: Final hardware layout

On the left you can see the small ”controller” that I made out of leftover breadboard and sticky tape. It
connects to the main board over the jumper wires.

Figure 25: Close-up view of the controller

27

On the PSOC Creator side, I added a debouncer component for each button, combined with a 100 Hz
clock:

Figure 26: Debounced buttons; 100 Hz clock on each debouncer

And for the joystick, I used the two SAR ADCs available on the PSOC 5 to read the analog inputs:

Figure 27: Reading analog inputs from the joystick using the ADCs.

28

The Game Boy itself has all of its buttons as a memory mapped peripheral at location 0xFF00.
Adding this to my emulator was very simple. I started with a new struct called Mmio to handle all of

the mapping between hardware and memory locations.

1 /∗
2 This s t r u c t handles mapping phy s i c a l hardware on the PSOC to memory l o c a t i o n s
3 ∗/
4 #i f n d e f MMIO H
5 #de f i n e MMIO H
6 #inc lude ”memory . h”
7 typede f s t r u c t Mmio {
8 Memory∗ mem ;
9 } Mmio ;

10 void setup_mmio (Mmio∗ mmio , Memory∗ mem) ;
11 void tick_mmio (Mmio∗ mmio) ;
12 #end i f

And in the tick mmio() funciton, I simply write to the appropriate memory location for the hardware:

1 void tick_mmio (Mmio∗ mmio) {
2 i n t joyx = ADC_JOY_X_GetResult16 () ;
3 i n t joyy = ADC_JOY_Y_GetResult16 () ;
4 uint8_t buttons = Button_Status_Read () ;
5 bool button1 = ! (buttons & 0b0001) ;
6 bool button2 = ! (buttons & 0b0010) ;
7 bool joy_sw = ! (buttons & 0b0100) ;
8 bool button3 = ! (buttons & 0b1000) ;
9

10 // Map inputs to gameboy inputs
11 bool left_pushed = joyx > 3700 ;
12 bool right_pushed = joyx < 500 ;
13 bool up_pushed = joyy < 500 ;
14 bool down_pushed = joyy > 3700 ;
15 bool a_pushed = button1 ;
16 bool b_pushed = button2 ;
17 bool start_pushed = joy_sw ;
18 bool select_pushed = button3 ;
19

20 // Write to memory l o c a t i o n 0xFF00
21 //Bit 7 − Not used
22 //Bit 6 − Not used
23 //Bit 5 − P15 Se l e c t Action buttons (0= Se l e c t)
24 //Bit 4 − P14 Se l e c t D i r e c t i on buttons (0= Se l e c t)
25 //Bit 3 − P13 Input : Down or Star t (0=Pressed) (Read Only)
26 //Bit 2 − P12 Input : Up or S e l e c t (0=Pressed) (Read Only)
27 //Bit 1 − P11 Input : Le f t or B (0=Pressed) (Read Only)
28 //Bit 0 − P10 Input : Right or A (0=Pressed) (Read Only)
29 // u i n t 8 t s e l e c t e d = f e t ch (mmio−>mem, 0xFF00 , f a l s e) ;
30 uint8_t selected = mmio−>mem−>joyp ;
31 uint8_t to_write = selected & 0x30 ;
32 i f (((selected >> 5) & 0b1) == 0) {
33 // ac t i on button s e l e c t e d
34 // d i r e c t i o n button s e l e c t e d
35 to_write |= (! a_pushed) & 0b1 ;
36 to_write |= ((! b_pushed) << 1) & 0b10 ;
37 to_write |= ((! select_pushed) << 2) & 0b100 ;
38 to_write |= ((! start_pushed) << 3) & 0b1000 ;
39 //write mem (mmio−>mem, 0xFF00 , t o w r i t e) ;
40 mmio−>mem−>joyp = to_write ;
41 } e l s e i f (((selected >> 4) & 0b1) == 0) {
42 // d i r e c t i o n button s e l e c t e d
43 to_write |= (! right_pushed) & 0b1 ;
44 to_write |= ((! left_pushed) << 1) & 0b10 ;
45 to_write |= ((! up_pushed) << 2) & 0b100 ;
46 to_write |= ((! down_pushed) << 3) & 0b1000 ;

29

47 //write mem (mmio−>mem, 0xFF00 , t o w r i t e) ;
48 mmio−>mem−>joyp = to_write ;
49 } e l s e {
50 //write mem (mmio−>mem, 0xFF00 , 0xFF) ;
51 mmio−>mem−>joyp = to_write ;
52 }
53 }

Notice that the write mem() calls are commented out to instead write directly to mem− > joyp. This
was another (tiny) optimization that helped improve the performance of the emulator very slightly.

And with that done, I tried to boot Tetris:

Figure 28: World’s easiest Tetris game.

Not quite right. It turns out that Tetris uses the Game Boy’s timer to generate random numbers to choose
blocks. Without this implemented, all of my blocks were squares. While this did make Tetris extremely easy
to play, it isn’t quite what we’re after.

17 Emulating Timer Interrupts

The Sharp LR35902 has an interesting hardware timer system. There are four memory registers:

30

Memory Location Abbrev. Name Function

0xFF04 DIV Divider Register Incremented at 16384Hz. Any writes reset it to 0
0xFF05 TIMA Timer Counter Incremented at the speed specified by TAC

(0xFF07). Overflows trigger a timer interrupt
0xFF06 TMA Time Modulo The value inside this register is used as the reset

value for TIMA when TIMA overflows.
0xFF07 TAC Timer Control Timer control register for TIMA. Uses the following

scheme:

Bit 2 - Timer Enable

Bits 1-0 - Input Clock Select

00: CPU Clock / 1024

01: CPU Clock / 16

10: CPU Clock / 64

11: CPU Clock / 256

To emulate these hardware timers, I started another struct Timer to manage the timer interrupts and
timing in my CPU. This was the final piece of the Tetris puzzle:

1 #i f n d e f TIMER H
2 #de f i n e TIMER H
3 #inc lude ”memory . h”
4 typede f s t r u c t Timer {
5 Memory∗ mem ;
6 i n t internal_clock ; // i n t e r n a l c l o ck count ing e lapsed m−c y c l e s
7 i n t baseclock ; // f a s t e s t t imer speed ; increments every 4 m−c y c l e s
8 i n t divclock ; // DIV r e g i s t e r increments at 1/16 th the ra t e o f a r e gu l a r increment ←↩

(4∗16 m−c y c l e s)
9 } Timer ;

10

11 // I n i t i a l i z e s a new timer
12 void setup_timer (Timer∗ timer , Memory∗ mem) ;
13

14 // p ro c e s s e s the next t i c k o f the t imer
15 // Takes in the # of machine c y c l e s that e lapsed
16 void tick_timer (Timer∗ timer , uint8_t delta_machine_cycles) ;
17

18 #end i f

The Timer struct simply emulates another state machine that updates itself based on the amount of
machine cycles that have passed, much like the one in the GPU. The tick timer() function looks like:

1 void tick_timer (Timer∗ timer , uint8_t delta_machine_cycles) {
2 timer−>internal_clock += delta_machine_cycles ;
3 // Keep t i c k i n g the t imer un t i l the i n t e r n a l c l o ck < 4
4 // I t i s p o s s i b l e f o r t i c k s to take >4 machine c y c l e s when RSTs occur
5 whi le (timer−>internal_clock >= 4) {
6 // the DIV r e g i s t e r i s ALWAYS count ing !
7 timer−>internal_clock −= 4 ;
8 timer−>divclock++;
9 i f (timer−>divclock == 16) {

10 // the DIV r e g i s t e r i s incremented once every 16∗4 m−c y c l e s
11 timer−>mem−>timer_divider++;
12 timer−>divclock = 0 ;
13 }
14

15 // Check i f t imers are enabled
16 uint8_t timer_control = timer−>mem−>timer_control ;
17 //Bit 2 − Timer Enable

31

18 // Bi t s 1−0 − Input Clock S e l e c t
19 // 00 : CPU Clock / 1024 = 4096 Hz = once every 4∗64 m−c y c l e s = 64 t imer .←↩

ba s e c l o ck s
20 // 01 : CPU Clock / 16 = 262144 Hz = once every 4 m−c y c l e s = 1 timer .←↩

ba s e c l o ck s
21 // 10 : CPU Clock / 64 = 65536 Hz = once every 4∗4 m−c y c l e s = 4 timer .←↩

ba s e c l o ck s
22 // 11 : CPU Clock / 256 = 16384 Hz = once every 4∗16 m−c y c l e s = 16 t imer .←↩

ba s e c l o ck s
23

24 i f (timer_control & 100) {
25 timer−>baseclock++; // the f a s t e s t base c l o ck speed i s once every 4 m−c y c l e s
26 i n t base_clock_threshold ;
27 switch (timer_control & 3) {
28 case 0 :
29 base_clock_threshold = 64 ;
30 break ;
31 case 1 :
32 base_clock_threshold = 1 ;
33 break ;
34 case 2 :
35 base_clock_threshold = 4 ;
36 break ;
37 case 3 :
38 base_clock_threshold = 16 ;
39 break ;
40 }
41

42 // Time to increment TIMA?
43 i f (timer−>baseclock >= base_clock_threshold) {
44 timer−>baseclock = 0 ;
45

46 i f (timer−>mem−>timer_counter == 0xFF) {
47 // This increment w i l l cause an over f l ow ; r eque s t i n t e r r up t
48 timer−>mem−>interrupt_flag |= INTERRUPT_ENABLE_TIMER_MASK ;
49 // And r e f i l l w i l the t imer modulo value
50 timer−>mem−>timer_counter = timer−>mem−>timer_modulo ;
51 } e l s e {
52 timer−>mem−>timer_counter++;
53 }
54 }
55 }
56 }
57 }

This is quite a simple implementation of the timer, but it is more than enough for our purposes!

18 Tetris! And other ROMS

Now, I tried booting Tetris, and was able to play a full Tetris game! I also tried Dr. Mario, which played
flawlessly.

32

Figure 29: Playing some Tetris

Figure 30: Dr. Mario in action (I have no clue how this game works)

33

19 Custom Boot ROM

With my emulator working, I decided to add some flare by giving it a custom boot ROM:

Figure 31: Custom boot logo

This was accomplished with the help of this excellent open-source project:
https://github.com/dobyrch/bootrom-gen

20 Conclusion

And with that, my emulator project is complete! I actually finished about two weeks earlier than the
due date, but this was simply because I started a few weeks earlier.

20.1 Where to go from here

I’m happy with the current state of the emulator, but there are certainly areas where it can be improved
given more time/effort. A huge section of a good emulator is currently missing: sound. The sound system
on the Game Boy is actually quite complicated, and it would likely require significant investment in both the
hardware of the system and the emulator. Additionally, the emulator is not able to run games larger than
32kB. This is a constraint of the hardware; the system could certainly be extended with additional memory
hardware, but I did not have the foresight to request additional memory at the start of the project. Lastly,
the speed of the emulator could probably be improved as well with more effort.

21 Appendix

21.1 Code

The full source code can be found here on my GitHub page:
https://github.com/raytran/psoc5-gb-emulator/

21.2 Useful Game Boy Emulator Development Links

• https://gbdev.io/pandocs/ This is a tremendously useful resource for Game Boy internals.

34

https://github.com/dobyrch/bootrom-gen
https://github.com/raytran/psoc5-gb-emulator/
https://gbdev.io/pandocs/

• https://izik1.github.io/gbops/ The most accurate instruction set reference for the Game Boy

• https://rgbds.gbdev.io/docs/v0.4.2/gbz80.7 Provides more in-depth explanations on opcodes.

• https://www.youtube.com/watch?v=HyzD8pNlpwI Extremely detailed talk on the Game Boy system.
Was very useful for implementing the GPU.

• https://vimm.net/ ROM archive

6.115 Rocks!
Thank you to Professor Leeb & the rest of the 6.115 course staff for the wonderful semester!

35

https://izik1.github.io/gbops/
https://rgbds.gbdev.io/docs/v0.4.2/gbz80.7
https://www.youtube.com/watch?v=HyzD8pNlpwI
https://vimm.net/

	Introduction and Motivation
	Project Overview and Layout
	Hardware
	Software

	Report Format
	Memory Module
	Registers
	The CPU
	Writing the opcodes
	Basic Fetch/Decode/Execute Loop

	Adding a unit testing framework
	Connecting the TFT display
	Measuring CPU Performance & The Display Bottleneck
	Optimizing for speed
	First try, Debug build, 24 Mhz Clock
	Debug build, 79 Mhz Clock
	Release build, -O3
	Release build, -O3, Additional Code Inlined

	Display Bottleneck

	Implementing a Debugger
	Video Display System (GPU)
	How the Game Boy Stores Video Data
	Tile Encoding
	Tile Mapping
	Scrolling

	Display Timing
	DMA Transfer

	Using Test ROMS
	Implementing Interrupts
	Back to the GPU: Window and Sprites
	Emulating DMA
	Adding the hardware input
	Emulating Timer Interrupts
	Tetris! And other ROMS
	Custom Boot ROM
	Conclusion
	Where to go from here

	Appendix
	Code
	Useful Game Boy Emulator Development Links

